Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal h(x)=e^(x^2-9)
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 1.1.3
Ganti semua kemunculan dengan .
Langkah 1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4
Tambahkan dan .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Susun kembali faktor-faktor dari .
Langkah 1.3.2
Susun kembali faktor-faktor dalam .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 2.3.3
Ganti semua kemunculan dengan .
Langkah 2.4
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.4
Tambahkan dan .
Langkah 2.5
Naikkan menjadi pangkat .
Langkah 2.6
Naikkan menjadi pangkat .
Langkah 2.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.8
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.8.1
Tambahkan dan .
Langkah 2.8.2
Pindahkan ke sebelah kiri .
Langkah 2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.10
Kalikan dengan .
Langkah 2.11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.11.1
Terapkan sifat distributif.
Langkah 2.11.2
Kalikan dengan .
Langkah 2.11.3
Susun kembali suku-suku.
Langkah 2.11.4
Susun kembali faktor-faktor dalam .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 4.1.1.3
Ganti semua kemunculan dengan .
Langkah 4.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.4
Tambahkan dan .
Langkah 4.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Susun kembali faktor-faktor dari .
Langkah 4.1.3.2
Susun kembali faktor-faktor dalam .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5.3
Atur sama dengan .
Langkah 5.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Atur sama dengan .
Langkah 5.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 5.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 5.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 5.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.4
Kurangi dengan .
Langkah 9.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 9.1.6
Kalikan dengan .
Langkah 9.1.7
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.8
Kurangi dengan .
Langkah 9.1.9
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 9.1.10
Gabungkan dan .
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.2
Kurangi dengan .
Langkah 11.2.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 11.2.4
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13