Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Gabungkan dan .
Langkah 1.2.2
Kalikan dengan .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.2.5
Hapus faktor persekutuan dari dan .
Langkah 1.2.5.1
Faktorkan dari .
Langkah 1.2.5.2
Batalkan faktor persekutuan.
Langkah 1.2.5.2.1
Faktorkan dari .
Langkah 1.2.5.2.2
Batalkan faktor persekutuan.
Langkah 1.2.5.2.3
Tulis kembali pernyataannya.
Langkah 1.2.5.2.4
Bagilah dengan .
Langkah 1.2.6
Kalikan dengan dengan menambahkan eksponennya.
Langkah 1.2.6.1
Pindahkan .
Langkah 1.2.6.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.2.6.3
Tambahkan dan .
Langkah 1.2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.9
Kalikan dengan .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Gabungkan dan .
Langkah 4.1.2.2
Kalikan dengan .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.2.4
Kalikan dengan .
Langkah 4.1.2.5
Hapus faktor persekutuan dari dan .
Langkah 4.1.2.5.1
Faktorkan dari .
Langkah 4.1.2.5.2
Batalkan faktor persekutuan.
Langkah 4.1.2.5.2.1
Faktorkan dari .
Langkah 4.1.2.5.2.2
Batalkan faktor persekutuan.
Langkah 4.1.2.5.2.3
Tulis kembali pernyataannya.
Langkah 4.1.2.5.2.4
Bagilah dengan .
Langkah 4.1.2.6
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.1.2.6.1
Pindahkan .
Langkah 4.1.2.6.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.1.2.6.3
Tambahkan dan .
Langkah 4.1.2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.9
Kalikan dengan .
Langkah 4.1.3
Evaluasi .
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.3
Kalikan dengan .
Langkah 4.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 4.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.4.2
Tambahkan dan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.3.1
Bagilah setiap suku di dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Langkah 5.3.2.1
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2
Bagilah dengan .
Langkah 5.3.3
Sederhanakan sisi kanannya.
Langkah 5.3.3.1
Hapus faktor persekutuan dari dan .
Langkah 5.3.3.1.1
Faktorkan dari .
Langkah 5.3.3.1.2
Batalkan faktor persekutuan.
Langkah 5.3.3.1.2.1
Faktorkan dari .
Langkah 5.3.3.1.2.2
Batalkan faktor persekutuan.
Langkah 5.3.3.1.2.3
Tulis kembali pernyataannya.
Langkah 5.3.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 5.4
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 5.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 5.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 6
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Tulis kembali sebagai .
Langkah 9.2
Terapkan kaidah hasil kali ke .
Langkah 9.3
Naikkan menjadi pangkat .
Langkah 9.4
Terapkan kaidah hasil kali ke .
Langkah 9.5
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.6
Naikkan menjadi pangkat .
Langkah 10
Langkah 10.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 10.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 10.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2.2
Sederhanakan hasilnya.
Langkah 10.2.2.1
Sederhanakan setiap suku.
Langkah 10.2.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.2.2.1.2
Kalikan dengan .
Langkah 10.2.2.2
Tambahkan dan .
Langkah 10.2.2.3
Jawaban akhirnya adalah .
Langkah 10.3
Tidak ada maksimum atau minimum lokal yang ditemukan untuk .
Tidak ada maksimum atau minimum lokal
Tidak ada maksimum atau minimum lokal
Langkah 11