Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan.
Langkah 1.1.1
Naikkan menjadi pangkat .
Langkah 1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4
Gabungkan suku-sukunya.
Langkah 1.4.1
Kurangi dengan .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3
Kalikan dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Diferensialkan.
Langkah 4.1.1.1
Naikkan menjadi pangkat .
Langkah 4.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.4
Gabungkan suku-sukunya.
Langkah 4.1.4.1
Kurangi dengan .
Langkah 4.1.4.2
Tambahkan dan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.2.1
Bagilah setiap suku di dengan .
Langkah 5.2.2
Sederhanakan sisi kirinya.
Langkah 5.2.2.1
Batalkan faktor persekutuan dari .
Langkah 5.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.2.2.1.2
Bagilah dengan .
Langkah 5.2.3
Sederhanakan sisi kanannya.
Langkah 5.2.3.1
Bagilah dengan .
Langkah 5.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.4
Sederhanakan .
Langkah 5.4.1
Tulis kembali sebagai .
Langkah 5.4.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5.4.3
Tambah atau kurang adalah .
Langkah 6
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.2
Kalikan dengan .
Langkah 10
Langkah 10.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 10.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 10.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2.2
Sederhanakan hasilnya.
Langkah 10.2.2.1
Naikkan menjadi pangkat .
Langkah 10.2.2.2
Kalikan dengan .
Langkah 10.2.2.3
Jawaban akhirnya adalah .
Langkah 10.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 10.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.3.2
Sederhanakan hasilnya.
Langkah 10.3.2.1
Naikkan menjadi pangkat .
Langkah 10.3.2.2
Kalikan dengan .
Langkah 10.3.2.3
Jawaban akhirnya adalah .
Langkah 10.4
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 10.5
Tidak ada maksimum atau minimum lokal yang ditemukan untuk .
Tidak ada maksimum atau minimum lokal
Tidak ada maksimum atau minimum lokal
Langkah 11