Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3
Ganti semua kemunculan dengan .
Langkah 2.2
Diferensialkan.
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4
Sederhanakan pernyataannya.
Langkah 2.2.4.1
Tambahkan dan .
Langkah 2.2.4.2
Kalikan dengan .
Langkah 2.3
Sederhanakan.
Langkah 2.3.1
Terapkan sifat distributif.
Langkah 2.3.2
Terapkan sifat distributif.
Langkah 2.3.3
Gabungkan suku-sukunya.
Langkah 2.3.3.1
Naikkan menjadi pangkat .
Langkah 2.3.3.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.3.3
Tambahkan dan .
Langkah 2.3.3.4
Kalikan dengan .
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Kalikan dengan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Langkah 5.1
Tentukan turunan pertamanya.
Langkah 5.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 5.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 5.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.1.3
Ganti semua kemunculan dengan .
Langkah 5.1.2
Diferensialkan.
Langkah 5.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.2.4
Sederhanakan pernyataannya.
Langkah 5.1.2.4.1
Tambahkan dan .
Langkah 5.1.2.4.2
Kalikan dengan .
Langkah 5.1.3
Sederhanakan.
Langkah 5.1.3.1
Terapkan sifat distributif.
Langkah 5.1.3.2
Terapkan sifat distributif.
Langkah 5.1.3.3
Gabungkan suku-sukunya.
Langkah 5.1.3.3.1
Naikkan menjadi pangkat .
Langkah 5.1.3.3.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.1.3.3.3
Tambahkan dan .
Langkah 5.1.3.3.4
Kalikan dengan .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Faktorkan sisi kiri persamaannya.
Langkah 6.2.1
Faktorkan dari .
Langkah 6.2.1.1
Faktorkan dari .
Langkah 6.2.1.2
Faktorkan dari .
Langkah 6.2.1.3
Faktorkan dari .
Langkah 6.2.2
Tulis kembali sebagai .
Langkah 6.2.3
Faktorkan.
Langkah 6.2.3.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 6.2.3.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 6.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6.4
Atur sama dengan .
Langkah 6.5
Atur agar sama dengan dan selesaikan .
Langkah 6.5.1
Atur sama dengan .
Langkah 6.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6.6
Atur agar sama dengan dan selesaikan .
Langkah 6.6.1
Atur sama dengan .
Langkah 6.6.2
Tambahkan ke kedua sisi persamaan.
Langkah 6.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 7
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Langkah 10.1
Sederhanakan setiap suku.
Langkah 10.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.1.2
Kalikan dengan .
Langkah 10.2
Kurangi dengan .
Langkah 11
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 12
Langkah 12.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 12.2
Sederhanakan hasilnya.
Langkah 12.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 12.2.2
Kurangi dengan .
Langkah 12.2.3
Naikkan menjadi pangkat .
Langkah 12.2.4
Jawaban akhirnya adalah .
Langkah 13
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 14
Langkah 14.1
Sederhanakan setiap suku.
Langkah 14.1.1
Naikkan menjadi pangkat .
Langkah 14.1.2
Kalikan dengan .
Langkah 14.2
Kurangi dengan .
Langkah 15
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 16
Langkah 16.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 16.2
Sederhanakan hasilnya.
Langkah 16.2.1
Naikkan menjadi pangkat .
Langkah 16.2.2
Kurangi dengan .
Langkah 16.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 16.2.4
Jawaban akhirnya adalah .
Langkah 17
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 18
Langkah 18.1
Sederhanakan setiap suku.
Langkah 18.1.1
Naikkan menjadi pangkat .
Langkah 18.1.2
Kalikan dengan .
Langkah 18.2
Kurangi dengan .
Langkah 19
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 20
Langkah 20.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 20.2
Sederhanakan hasilnya.
Langkah 20.2.1
Naikkan menjadi pangkat .
Langkah 20.2.2
Kurangi dengan .
Langkah 20.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 20.2.4
Jawaban akhirnya adalah .
Langkah 21
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
adalah minimum lokal
adalah minimum lokal
Langkah 22