Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Integralkan bagian demi bagian menggunakan rumus , di mana dan .
Langkah 5
Langkah 5.1
Gabungkan dan .
Langkah 5.2
Pindahkan ke sebelah kiri .
Langkah 6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 7
Kalikan dengan .
Langkah 8
Langkah 8.1
Biarkan . Tentukan .
Langkah 8.1.1
Diferensialkan .
Langkah 8.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 8.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.1.5
Tambahkan dan .
Langkah 8.2
Tulis kembali soalnya menggunakan dan .
Langkah 9
Langkah 9.1
Kalikan dengan .
Langkah 9.2
Pindahkan ke sebelah kiri .
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Langkah 11.1
Gabungkan dan .
Langkah 11.2
Hapus faktor persekutuan dari dan .
Langkah 11.2.1
Faktorkan dari .
Langkah 11.2.2
Batalkan faktor persekutuan.
Langkah 11.2.2.1
Faktorkan dari .
Langkah 11.2.2.2
Batalkan faktor persekutuan.
Langkah 11.2.2.3
Tulis kembali pernyataannya.
Langkah 11.2.2.4
Bagilah dengan .
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Tulis kembali sebagai .
Langkah 14
Ganti semua kemunculan dengan .
Langkah 15
Jawabannya adalah antiturunan dari fungsi .