Masukkan soal...
Kalkulus Contoh
Langkah 1
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 2
Buat integral untuk dipecahkan.
Langkah 3
Susun kembali dan .
Langkah 4
Susun kembali dan .
Langkah 5
Langkah 5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+ | + | + | + |
Langkah 5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | + | + | + |
Langkah 5.3
Kalikan suku hasil bagi baru dengan pembagi.
+ | + | + | + | ||||||||
+ | + | + |
Langkah 5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | + | + | + | ||||||||
- | - | - |
Langkah 5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | + | + | + | ||||||||
- | - | - | |||||||||
+ |
Langkah 5.6
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 6
Bagi integral tunggal menjadi beberapa integral.
Langkah 7
Terapkan aturan konstanta.
Langkah 8
Langkah 8.1
Susun kembali dan .
Langkah 8.2
Tulis kembali sebagai .
Langkah 9
Integral dari terhadap adalah .
Langkah 10
Sederhanakan.
Langkah 11
Jawabannya adalah antiturunan dari fungsi .