Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.2
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.1.2.3
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.2.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 1.1.2.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.5
Sederhanakan jawabannya.
Langkah 1.1.2.5.1
Sederhanakan setiap suku.
Langkah 1.1.2.5.1.1
Nilai eksak dari adalah .
Langkah 1.1.2.5.1.2
Nilai eksak dari adalah .
Langkah 1.1.2.5.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.2.5.3
Kurangi dengan .
Langkah 1.1.2.5.4
Bagilah dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Evaluasi limitnya.
Langkah 1.1.3.1.1
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.3.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Langkah 1.1.3.3.1
Batalkan faktor persekutuan dari .
Langkah 1.1.3.3.1.1
Faktorkan dari .
Langkah 1.1.3.3.1.2
Batalkan faktor persekutuan.
Langkah 1.1.3.3.1.3
Tulis kembali pernyataannya.
Langkah 1.1.3.3.2
Nilai eksak dari adalah .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.3
Turunan dari terhadap adalah .
Langkah 1.3.4
Evaluasi .
Langkah 1.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4.2
Turunan dari terhadap adalah .
Langkah 1.3.4.3
Kalikan dengan .
Langkah 1.3.4.4
Kalikan dengan .
Langkah 1.3.5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.5.2
Turunan dari terhadap adalah .
Langkah 1.3.5.3
Ganti semua kemunculan dengan .
Langkah 1.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.7
Kalikan dengan .
Langkah 1.3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.9
Kalikan dengan .
Langkah 2
Langkah 2.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.3
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.4
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.5
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.6
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.7
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3
Langkah 3.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Langkah 4.1
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2
Sederhanakan pembilangnya.
Langkah 4.2.1
Nilai eksak dari adalah .
Langkah 4.2.2
Nilai eksak dari adalah .
Langkah 4.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.2.4
Tulis kembali dalam bentuk faktor.
Langkah 4.2.4.1
Tambahkan dan .
Langkah 4.2.4.2
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Langkah 4.2.4.2.1
Kurangi pernyataan dengan membatalkan faktor persekutuan.
Langkah 4.2.4.2.1.1
Batalkan faktor persekutuan.
Langkah 4.2.4.2.1.2
Tulis kembali pernyataannya.
Langkah 4.2.4.2.2
Bagilah dengan .
Langkah 4.3
Sederhanakan penyebutnya.
Langkah 4.3.1
Batalkan faktor persekutuan dari .
Langkah 4.3.1.1
Faktorkan dari .
Langkah 4.3.1.2
Batalkan faktor persekutuan.
Langkah 4.3.1.3
Tulis kembali pernyataannya.
Langkah 4.3.2
Nilai eksak dari adalah .
Langkah 4.4
Bagilah dengan .
Langkah 4.5
Gabungkan dan .
Langkah 5
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: