Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati 0 dari (cos(x)-1)/(2x^2)
Langkah 1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.1.2.1.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.1.2.1.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.3.1.1
Nilai eksak dari adalah .
Langkah 2.1.2.3.1.2
Kalikan dengan .
Langkah 2.1.2.3.2
Kurangi dengan .
Langkah 2.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 2.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.3.3
Turunan dari terhadap adalah .
Langkah 2.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.5
Tambahkan dan .
Langkah 2.3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 4
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 4.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 4.1.2.1.2
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 4.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.3.1
Nilai eksak dari adalah .
Langkah 4.1.2.3.2
Kalikan dengan .
Langkah 4.1.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 4.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 4.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 4.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.3
Turunan dari terhadap adalah .
Langkah 4.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.4
Bagilah dengan .
Langkah 5
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 6
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 7
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1.1
Kalikan dengan .
Langkah 7.1.2
Kalikan dengan .
Langkah 7.2
Gabungkan dan .
Langkah 7.3
Pindahkan tanda negatif di depan pecahan.
Langkah 7.4
Nilai eksak dari adalah .
Langkah 7.5
Kalikan dengan .
Langkah 8
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: