Masukkan soal...
Kalkulus Contoh
Langkah 1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3
Evaluasi limit dari penyebutnya.
Langkah 2.1.3.1
Evaluasi limitnya.
Langkah 2.1.3.1.1
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 2.1.3.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.3
Sederhanakan jawabannya.
Langkah 2.1.3.3.1
Kalikan dengan .
Langkah 2.1.3.3.2
Nilai eksak dari adalah .
Langkah 2.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Turunan dari terhadap adalah .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.6
Kalikan dengan .
Langkah 2.3.7
Pindahkan ke sebelah kiri .
Langkah 3
Langkah 3.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 3.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3.4
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 3.5
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 3.6
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5
Langkah 5.1
Batalkan faktor persekutuan dari .
Langkah 5.1.1
Faktorkan dari .
Langkah 5.1.2
Batalkan faktor persekutuan.
Langkah 5.1.3
Tulis kembali pernyataannya.
Langkah 5.2
Tulis kembali sebagai .
Langkah 5.3
Tulis kembali sebagai .
Langkah 5.4
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 5.5
Kalikan balikan dari pecahan tersebut untuk membagi dengan .
Langkah 5.6
Kalikan dengan .
Langkah 5.7
Kalikan dengan .
Langkah 5.8
Nilai eksak dari adalah .
Langkah 5.9
Satu dipangkat berapa pun sama dengan satu.
Langkah 5.10
Kalikan dengan .