Masukkan soal...
Kalkulus Contoh
Langkah 1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari pembilangnya.
Langkah 2.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.1.2.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.1.2.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.1.2.4
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.1.2.5
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 2.1.2.5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.6
Sederhanakan jawabannya.
Langkah 2.1.2.6.1
Sederhanakan setiap suku.
Langkah 2.1.2.6.1.1
Kalikan dengan .
Langkah 2.1.2.6.1.2
Nilai eksak dari adalah .
Langkah 2.1.2.6.1.3
Kalikan dengan .
Langkah 2.1.2.6.2
Tambahkan dan .
Langkah 2.1.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.3.3
Evaluasi .
Langkah 2.3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Kalikan dengan .
Langkah 2.3.4
Evaluasi .
Langkah 2.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.4.2
Turunan dari terhadap adalah .
Langkah 2.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Bagilah dengan .
Langkah 3
Langkah 3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.4
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5
Langkah 5.1
Sederhanakan setiap suku.
Langkah 5.1.1
Nilai eksak dari adalah .
Langkah 5.1.2
Kalikan dengan .
Langkah 5.2
Kurangi dengan .
Langkah 5.3
Gabungkan dan .
Langkah 5.4
Pindahkan tanda negatif di depan pecahan.
Langkah 6
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: