Masukkan soal...
Kalkulus Contoh
Langkah 1
Ubah pertidaksamaan tersebut menjadi persamaan.
Langkah 2
Langkah 2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.2.1
Bagilah setiap suku di dengan .
Langkah 2.2.2
Sederhanakan sisi kirinya.
Langkah 2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.2.2.2
Bagilah dengan .
Langkah 2.2.3
Sederhanakan sisi kanannya.
Langkah 2.2.3.1
Bagilah dengan .
Langkah 2.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 2.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 2.5
Selesaikan .
Langkah 2.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 2.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.5.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.5.3.1
Bagilah setiap suku di dengan .
Langkah 2.5.3.2
Sederhanakan sisi kirinya.
Langkah 2.5.3.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.5.3.2.2
Bagilah dengan .
Langkah 2.5.3.3
Sederhanakan sisi kanannya.
Langkah 2.5.3.3.1
Sederhanakan setiap suku.
Langkah 2.5.3.3.1.1
Pindahkan tanda negatif dari penyebut .
Langkah 2.5.3.3.1.2
Tulis kembali sebagai .
Langkah 2.5.3.3.1.3
Bagilah dengan .
Langkah 3
Langkah 3.1
Atur argumen dalam agar lebih besar dari untuk menentukan di mana pernyataannya terdefinisi.
Langkah 3.2
Selesaikan .
Langkah 3.2.1
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 3.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.2.2.1
Bagi setiap suku dalam dengan . Ketika mengalikan atau membagi kedua sisi pertidaksamaan dengan nilai negatif, balik arah tanda pertidaksamaan.
Langkah 3.2.2.2
Sederhanakan sisi kirinya.
Langkah 3.2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.2.2.2.2
Bagilah dengan .
Langkah 3.2.2.3
Sederhanakan sisi kanannya.
Langkah 3.2.2.3.1
Bagilah dengan .
Langkah 3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 4
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 5
Langkah 5.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 5.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.1.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 5.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 5.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.2.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 5.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 5.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.3.3
Tentukan apakah pertidaksamaan tersebut benar.
Langkah 5.3.3.1
Persamaan tersebut tidak dapat diselesaikan karena tidak terdefinisi.
Langkah 5.3.3.2
Sisi kirinya tidak memiliki penyelesaian, yang berarti pernyataan yang diberikan salah.
False
False
False
Langkah 5.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Salah
Benar
Salah
Langkah 6
Penyelesaian tersebut terdiri dari semua interval hakiki.
Langkah 7
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 8