Kalkulus Contoh

Selesaikan untuk x 1- log alami dari 1-x>0
Langkah 1
Ubah pertidaksamaan tersebut menjadi persamaan.
Langkah 2
Selesaikan persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Bagilah setiap suku di dengan .
Langkah 2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.2.2.2
Bagilah dengan .
Langkah 2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Bagilah dengan .
Langkah 2.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 2.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 2.5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 2.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.5.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.3.1
Bagilah setiap suku di dengan .
Langkah 2.5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.3.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.5.3.2.2
Bagilah dengan .
Langkah 2.5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.3.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.3.3.1.1
Pindahkan tanda negatif dari penyebut .
Langkah 2.5.3.3.1.2
Tulis kembali sebagai .
Langkah 2.5.3.3.1.3
Bagilah dengan .
Langkah 3
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur argumen dalam agar lebih besar dari untuk menentukan di mana pernyataannya terdefinisi.
Langkah 3.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 3.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Bagi setiap suku dalam dengan . Ketika mengalikan atau membagi kedua sisi pertidaksamaan dengan nilai negatif, balik arah tanda pertidaksamaan.
Langkah 3.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.2.2.2.2
Bagilah dengan .
Langkah 3.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.3.1
Bagilah dengan .
Langkah 3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 4
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 5
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.1.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 5.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.2.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 5.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.3.3
Tentukan apakah pertidaksamaan tersebut benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Persamaan tersebut tidak dapat diselesaikan karena tidak terdefinisi.
Langkah 5.3.3.2
Sisi kirinya tidak memiliki penyelesaian, yang berarti pernyataan yang diberikan salah.
False
False
False
Langkah 5.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Salah
Benar
Salah
Langkah 6
Penyelesaian tersebut terdiri dari semua interval hakiki.
Langkah 7
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 8