Kalkulus Contoh

Tentukan Turunan - d/dt g(t)=sin(3t)^2+arcsin(3t)
Langkah 1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3
Ganti semua kemunculan dengan .
Langkah 2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.2
Turunan dari terhadap adalah .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5
Kalikan dengan .
Langkah 2.6
Pindahkan ke sebelah kiri .
Langkah 2.7
Kalikan dengan .
Langkah 3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.1.2
Turunan dari terhadap adalah .
Langkah 3.1.3
Ganti semua kemunculan dengan .
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Faktorkan dari .
Langkah 3.5
Terapkan kaidah hasil kali ke .
Langkah 3.6
Naikkan menjadi pangkat .
Langkah 3.7
Kalikan dengan .
Langkah 3.8
Kalikan dengan .
Langkah 3.9
Gabungkan dan .
Langkah 4
Susun kembali suku-suku.