Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 1.2
Kurangi dengan .
Langkah 2
Langkah 2.1
Tambahkan pada kedua sisi pertidaksamaan tersebut.
Langkah 2.2
Tambahkan dan .
Langkah 3
Konversikan pertidaksamaan ke persamaan.
Langkah 4
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 5
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 6
Langkah 6.1
Sederhanakan pembilangnya.
Langkah 6.1.1
Naikkan menjadi pangkat .
Langkah 6.1.2
Kalikan .
Langkah 6.1.2.1
Kalikan dengan .
Langkah 6.1.2.2
Kalikan dengan .
Langkah 6.1.3
Tambahkan dan .
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Pindahkan tanda negatif di depan pecahan.
Langkah 7
Gabungkan penyelesaiannya.
Langkah 8
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 9
Langkah 9.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.1.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 9.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.2.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 9.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 9.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Benar
Salah
Benar
Benar
Salah
Benar
Langkah 10
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau
Langkah 11
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 12