Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 1.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 1.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 3.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 3.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Langkah 5.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 5.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 5.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 5.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 5.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 5.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 5.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 5.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 5.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 6
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 7
Langkah 7.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 7.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 7.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 7.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 7.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 7.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 7.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 7.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 7.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 8
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 9
Karena pembilangnya mendekati bilangan riil sementara penyebutnya tidak terbatas, pecahan mendekati .
Langkah 10
Langkah 10.1
Tulis kembali sebagai .
Langkah 10.2
Perluas dengan memindahkan ke luar logaritma.
Langkah 10.3
Hapus faktor persekutuan dari dan .
Langkah 10.3.1
Faktorkan dari .
Langkah 10.3.2
Batalkan faktor persekutuan.
Langkah 10.3.2.1
Faktorkan dari .
Langkah 10.3.2.2
Batalkan faktor persekutuan.
Langkah 10.3.2.3
Tulis kembali pernyataannya.
Langkah 10.4
Kalikan .
Langkah 10.4.1
Kalikan dengan .
Langkah 10.4.2
Kalikan dengan .
Langkah 10.5
Tulis kembali sebagai .
Langkah 10.6
Perluas dengan memindahkan ke luar logaritma.
Langkah 10.7
Hapus faktor persekutuan dari dan .
Langkah 10.7.1
Faktorkan dari .
Langkah 10.7.2
Batalkan faktor persekutuan.
Langkah 10.7.2.1
Faktorkan dari .
Langkah 10.7.2.2
Batalkan faktor persekutuan.
Langkah 10.7.2.3
Tulis kembali pernyataannya.
Langkah 10.8
Sederhanakan penyebutnya.
Langkah 10.8.1
Naikkan menjadi pangkat .
Langkah 10.8.2
Naikkan menjadi pangkat .
Langkah 10.8.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 10.8.4
Tambahkan dan .
Langkah 10.9
Gabungkan.
Langkah 10.10
Gabungkan.
Langkah 10.11
Sederhanakan pembilangnya.
Langkah 10.11.1
Kalikan dengan .
Langkah 10.11.2
Kalikan dengan .
Langkah 10.12
Sederhanakan penyebutnya.
Langkah 10.12.1
Naikkan menjadi pangkat .
Langkah 10.12.2
Naikkan menjadi pangkat .
Langkah 10.12.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 10.12.4
Tambahkan dan .
Langkah 10.13
Kalikan dengan .