Kalkulus Contoh

Tentukan Turunan - d/dx y=x^3(2x-9)^5
Langkah 1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3
Ganti semua kemunculan dengan .
Langkah 3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan dengan .
Langkah 3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Tambahkan dan .
Langkah 3.6.2
Kalikan dengan .
Langkah 3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.8
Pindahkan ke sebelah kiri .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Faktorkan dari .
Langkah 4.1.2
Faktorkan dari .
Langkah 4.1.3
Faktorkan dari .
Langkah 4.2
Pindahkan ke sebelah kiri .