Kalkulus Contoh

Tentukan Turunan - d/dx y=(x^3+1) log alami dari x^3+1
Langkah 1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2
Turunan dari terhadap adalah .
Langkah 2.3
Ganti semua kemunculan dengan .
Langkah 3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Tambahkan dan .
Langkah 3.4.2
Gabungkan dan .
Langkah 3.4.3
Gabungkan dan .
Langkah 3.4.4
Pindahkan ke sebelah kiri .
Langkah 3.5
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.8
Tambahkan dan .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Susun kembali suku-suku.
Langkah 4.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Tulis kembali sebagai .
Langkah 4.2.1.2
Karena kedua suku adalah pangkat tiga sempurna, faktorkan menggunakan rumus penjumlahan pangkat tiga. di mana dan .
Langkah 4.2.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.3.1
Kalikan dengan .
Langkah 4.2.1.3.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.2.2
Kalikan dengan .
Langkah 4.2.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.1
Tulis kembali sebagai .
Langkah 4.2.3.2
Karena kedua suku adalah pangkat tiga sempurna, faktorkan menggunakan rumus penjumlahan pangkat tiga. di mana dan .
Langkah 4.2.3.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.3.1
Kalikan dengan .
Langkah 4.2.3.3.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.2.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.4.1
Batalkan faktor persekutuan.
Langkah 4.2.4.2
Tulis kembali pernyataannya.
Langkah 4.2.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.5.1
Batalkan faktor persekutuan.
Langkah 4.2.5.2
Bagilah dengan .