Kalkulus Contoh

Tentukan Turunan - d/dx f(x)=(cos(8x)-1)/(sin(9x))
Langkah 1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2
Turunan dari terhadap adalah .
Langkah 3.3
Ganti semua kemunculan dengan .
Langkah 4
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2
Kalikan dengan .
Langkah 4.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.4
Kalikan dengan .
Langkah 4.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.6
Tambahkan dan .
Langkah 5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 5.2
Turunan dari terhadap adalah .
Langkah 5.3
Ganti semua kemunculan dengan .
Langkah 6
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 6.4
Kalikan dengan .
Langkah 7
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Terapkan sifat distributif.
Langkah 7.2
Terapkan sifat distributif.
Langkah 7.3
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 7.3.2
Kalikan dengan .
Langkah 7.4
Susun kembali suku-suku.