Kalkulus Contoh

Cari dy/dx y=(2x^2-5x)/3
Langkah 1
Diferensialkan kedua sisi persamaan tersebut.
Langkah 2
Turunan dari terhadap adalah .
Langkah 3
Diferensialkan sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1.1
Faktorkan dari .
Langkah 3.1.1.2
Faktorkan dari .
Langkah 3.1.1.3
Faktorkan dari .
Langkah 3.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.4
Kalikan dengan .
Langkah 3.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.6.1
Tambahkan dan .
Langkah 3.3.6.2
Pindahkan ke sebelah kiri .
Langkah 3.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.8
Sederhanakan dengan menambahkan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.8.1
Kalikan dengan .
Langkah 3.3.8.2
Tambahkan dan .
Langkah 3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Terapkan sifat distributif.
Langkah 3.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.2.1
Gabungkan dan .
Langkah 3.4.2.2
Gabungkan dan .
Langkah 3.4.2.3
Gabungkan dan .
Langkah 3.4.2.4
Pindahkan tanda negatif di depan pecahan.
Langkah 4
Membentuk ulang persamaan dengan mengatur sisi kiri sama dengan sisi kanan.
Langkah 5
Ganti dengan .