Kalkulus Contoh

Tentukan Titik Kritisnya f(x)=(2x^2)/(x^2-1)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.2
Pindahkan ke sebelah kiri .
Langkah 1.1.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.6.1
Tambahkan dan .
Langkah 1.1.3.6.2
Kalikan dengan .
Langkah 1.1.4
Naikkan menjadi pangkat .
Langkah 1.1.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.6
Tambahkan dan .
Langkah 1.1.7
Gabungkan dan .
Langkah 1.1.8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.1
Terapkan sifat distributif.
Langkah 1.1.8.2
Terapkan sifat distributif.
Langkah 1.1.8.3
Terapkan sifat distributif.
Langkah 1.1.8.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.4.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.4.1.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.4.1.1.1
Pindahkan .
Langkah 1.1.8.4.1.1.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.4.1.1.2.1
Naikkan menjadi pangkat .
Langkah 1.1.8.4.1.1.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.8.4.1.1.3
Tambahkan dan .
Langkah 1.1.8.4.1.2
Kalikan dengan .
Langkah 1.1.8.4.1.3
Kalikan dengan .
Langkah 1.1.8.4.1.4
Kalikan dengan .
Langkah 1.1.8.4.1.5
Kalikan dengan .
Langkah 1.1.8.4.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.4.2.1
Kurangi dengan .
Langkah 1.1.8.4.2.2
Tambahkan dan .
Langkah 1.1.8.5
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.8.6
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.6.1
Tulis kembali sebagai .
Langkah 1.1.8.6.2
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 1.1.8.6.3
Terapkan kaidah hasil kali ke .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Bagilah setiap suku di dengan .
Langkah 2.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.1.2
Bagilah dengan .
Langkah 2.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Bagilah dengan .
Langkah 3
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 3.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.2.2
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Atur sama dengan .
Langkah 3.2.2.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.2.1
Atur agar sama dengan .
Langkah 3.2.2.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.2.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.3.1
Atur sama dengan .
Langkah 3.2.3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.3.2.1
Atur agar sama dengan .
Langkah 3.2.3.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.2.4
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3.3
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Substitusikan untuk .
Langkah 4.1.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 4.1.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 4.1.2.2.2
Kurangi dengan .
Langkah 4.1.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.3.1
Kalikan dengan .
Langkah 4.1.2.3.2
Bagilah dengan .
Langkah 4.2
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Substitusikan untuk .
Langkah 4.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Naikkan menjadi pangkat .
Langkah 4.2.2.2
Kurangi dengan .
Langkah 4.2.2.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Langkah 4.3
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Substitusikan untuk .
Langkah 4.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.3.2.2
Kurangi dengan .
Langkah 4.3.2.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Langkah 4.4
Tuliskan semua titik-titiknya.
Langkah 5