Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.2.3
Ganti semua kemunculan dengan .
Langkah 1.3
Diferensialkan.
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Sederhanakan pernyataannya.
Langkah 1.3.3.1
Kalikan dengan .
Langkah 1.3.3.2
Pindahkan ke sebelah kiri .
Langkah 1.3.3.3
Tulis kembali sebagai .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Susun kembali suku-suku.
Langkah 1.4.2
Susun kembali faktor-faktor dalam .
Langkah 2
Langkah 2.1
Faktorkan dari .
Langkah 2.1.1
Faktorkan dari .
Langkah 2.1.2
Kalikan dengan .
Langkah 2.1.3
Faktorkan dari .
Langkah 2.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.3
Atur agar sama dengan dan selesaikan .
Langkah 2.3.1
Atur sama dengan .
Langkah 2.3.2
Selesaikan untuk .
Langkah 2.3.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 2.3.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 2.3.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Langkah 2.4.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.4.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.4.2.2.2
Sederhanakan sisi kirinya.
Langkah 2.4.2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.4.2.2.2.2
Bagilah dengan .
Langkah 2.4.2.2.3
Sederhanakan sisi kanannya.
Langkah 2.4.2.2.3.1
Bagilah dengan .
Langkah 2.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Langkah 3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.2
Sederhanakan hasilnya.
Langkah 3.2.1
Kalikan dengan .
Langkah 3.2.2
Kalikan dengan .
Langkah 3.2.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 3.2.4
Jawaban akhirnya adalah .
Langkah 4
Garis tangen datar pada fungsi adalah .
Langkah 5