Kalkulus Contoh

Tentukan Garis Singgung Horizontal f(x)=x^3-6x
Langkah 1
Tentukan turunannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 2
Atur turunan tersebut ahar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Bagilah setiap suku di dengan .
Langkah 2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.2.2.1.2
Bagilah dengan .
Langkah 2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Bagilah dengan .
Langkah 2.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Selesaikan fungsi asal pada .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Tulis kembali sebagai .
Langkah 3.2.1.2
Naikkan menjadi pangkat .
Langkah 3.2.1.3
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.3.1
Faktorkan dari .
Langkah 3.2.1.3.2
Tulis kembali sebagai .
Langkah 3.2.1.4
Mengeluarkan suku-suku dari bawah akar.
Langkah 3.2.2
Kurangi dengan .
Langkah 3.2.3
Jawaban akhirnya adalah .
Langkah 4
Selesaikan fungsi asal pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 4.2.1.2
Naikkan menjadi pangkat .
Langkah 4.2.1.3
Tulis kembali sebagai .
Langkah 4.2.1.4
Naikkan menjadi pangkat .
Langkah 4.2.1.5
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.5.1
Faktorkan dari .
Langkah 4.2.1.5.2
Tulis kembali sebagai .
Langkah 4.2.1.6
Mengeluarkan suku-suku dari bawah akar.
Langkah 4.2.1.7
Kalikan dengan .
Langkah 4.2.1.8
Kalikan dengan .
Langkah 4.2.2
Tambahkan dan .
Langkah 4.2.3
Jawaban akhirnya adalah .
Langkah 5
Garis tangen datar pada fungsi adalah .
Langkah 6