Kalkulus Contoh

Tentukan Garis Singgung Horizontal f(x)=x/(x^2+1)
Langkah 1
Tentukan turunannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2
Kalikan dengan .
Langkah 1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.1
Tambahkan dan .
Langkah 1.2.6.2
Kalikan dengan .
Langkah 1.3
Naikkan menjadi pangkat .
Langkah 1.4
Naikkan menjadi pangkat .
Langkah 1.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.6
Tambahkan dan .
Langkah 1.7
Kurangi dengan .
Langkah 2
Atur turunan tersebut ahar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Atur agar pembilangnya sama dengan nol.
Langkah 2.2
Selesaikan persamaan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.2.2.2.2
Bagilah dengan .
Langkah 2.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.3.1
Bagilah dengan .
Langkah 2.2.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.2.4
Sebarang akar dari adalah .
Langkah 2.2.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.2.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.2.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Selesaikan fungsi asal pada .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.2.1.2
Tambahkan dan .
Langkah 3.2.2
Jawaban akhirnya adalah .
Langkah 4
Selesaikan fungsi asal pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Naikkan menjadi pangkat .
Langkah 4.2.1.2
Tambahkan dan .
Langkah 4.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2.3
Jawaban akhirnya adalah .
Langkah 5
Garis tangen datar pada fungsi adalah .
Langkah 6