Masukkan soal...
Kalkulus Contoh
Langkah 1
Susun kembali dan .
Langkah 2
Tetapkan sebagai fungsi dari .
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Kalikan dengan .
Langkah 4
Langkah 4.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 4.2.1
Bagilah setiap suku di dengan .
Langkah 4.2.2
Sederhanakan sisi kirinya.
Langkah 4.2.2.1
Batalkan faktor persekutuan dari .
Langkah 4.2.2.1.1
Batalkan faktor persekutuan.
Langkah 4.2.2.1.2
Bagilah dengan .
Langkah 4.2.3
Sederhanakan sisi kanannya.
Langkah 4.2.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan setiap suku.
Langkah 5.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 5.2.1.2
Naikkan menjadi pangkat .
Langkah 5.2.1.3
Naikkan menjadi pangkat .
Langkah 5.2.1.4
Kalikan .
Langkah 5.2.1.4.1
Gabungkan dan .
Langkah 5.2.1.4.2
Kalikan dengan .
Langkah 5.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Langkah 5.2.3.1
Kalikan dengan .
Langkah 5.2.3.2
Kalikan dengan .
Langkah 5.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.5
Sederhanakan pembilangnya.
Langkah 5.2.5.1
Kalikan dengan .
Langkah 5.2.5.2
Tambahkan dan .
Langkah 5.2.6
Jawaban akhirnya adalah .
Langkah 6
Garis tangen datar pada fungsi adalah .
Langkah 7