Kalkulus Contoh

Tentukan Titik Kritisnya y=x^3-3x+3
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Tambahkan dan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Bagilah setiap suku di dengan .
Langkah 2.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.1.2
Bagilah dengan .
Langkah 2.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Bagilah dengan .
Langkah 2.4
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.5
Sebarang akar dari adalah .
Langkah 2.6
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.6.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.6.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Substitusikan untuk .
Langkah 4.1.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.2.1.2
Kalikan dengan .
Langkah 4.1.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Kurangi dengan .
Langkah 4.1.2.2.2
Tambahkan dan .
Langkah 4.2
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Substitusikan untuk .
Langkah 4.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1.1
Naikkan menjadi pangkat .
Langkah 4.2.2.1.2
Kalikan dengan .
Langkah 4.2.2.2
Sederhanakan dengan menambahkan bilangan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.2.1
Tambahkan dan .
Langkah 4.2.2.2.2
Tambahkan dan .
Langkah 4.3
Tuliskan semua titik-titiknya.
Langkah 5