Kalkulus Contoh

Cari Titik-titik Beloknya f(x)=6/(x-5)
Langkah 1
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2
Tulis kembali sebagai .
Langkah 1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Kalikan dengan .
Langkah 1.1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.5
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.5.1
Tambahkan dan .
Langkah 1.1.3.5.2
Kalikan dengan .
Langkah 1.1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.1.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.1
Gabungkan dan .
Langkah 1.1.4.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.2.1
Tulis kembali sebagai .
Langkah 1.2.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.2.1.2.2.2
Kalikan dengan .
Langkah 1.2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2.3
Ganti semua kemunculan dengan .
Langkah 1.2.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Kalikan dengan .
Langkah 1.2.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3.5
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.5.1
Tambahkan dan .
Langkah 1.2.3.5.2
Kalikan dengan .
Langkah 1.2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.2.4.2
Gabungkan dan .
Langkah 1.3
Turunan kedua dari terhadap adalah .
Langkah 2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Atur turunan keduanya sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 3
Tidak ada nilai yang ditemukan yang dapat membuat turunan keduanya sama dengan .
Tidak Ada Titik Belok