Kalkulus Contoh

Tentukan Kecekungannya f(x)=x^2+10x-9
Langkah 1
Find the values where the second derivative is equal to .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Kalikan dengan .
Langkah 1.1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.2
Tambahkan dan .
Langkah 1.1.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.2.3
Kalikan dengan .
Langkah 1.1.2.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.3.2
Tambahkan dan .
Langkah 1.1.3
Turunan kedua dari terhadap adalah .
Langkah 1.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Atur turunan keduanya sama dengan .
Langkah 1.2.2
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 2
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 3
Grafiknya cekung ke atas karena turunan keduanya positif.
Grafik cekung ke atas
Langkah 4