Kalkulus Contoh

Cari Turunan 2nd y=(2x-1)/(3x+4)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.1
Tambahkan dan .
Langkah 1.2.6.2
Pindahkan ke sebelah kiri .
Langkah 1.2.7
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.10
Kalikan dengan .
Langkah 1.2.11
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.12
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.12.1
Tambahkan dan .
Langkah 1.2.12.2
Kalikan dengan .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Terapkan sifat distributif.
Langkah 1.3.2
Terapkan sifat distributif.
Langkah 1.3.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1.1
Kalikan dengan .
Langkah 1.3.3.1.2
Kalikan dengan .
Langkah 1.3.3.1.3
Kalikan dengan .
Langkah 1.3.3.1.4
Kalikan dengan .
Langkah 1.3.3.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.2.1
Kurangi dengan .
Langkah 1.3.3.2.2
Tambahkan dan .
Langkah 1.3.3.3
Tambahkan dan .
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Tulis kembali sebagai .
Langkah 2.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.1.2.2.2
Kalikan dengan .
Langkah 2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Kalikan dengan .
Langkah 2.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan dengan .
Langkah 2.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.7.1
Tambahkan dan .
Langkah 2.3.7.2
Kalikan dengan .
Langkah 2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Gabungkan dan .
Langkah 2.4.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 3
Tentukan turunan ketiganya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1
Tulis kembali sebagai .
Langkah 3.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.1.2.2.2
Kalikan dengan .
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Kalikan dengan .
Langkah 3.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.5
Kalikan dengan .
Langkah 3.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.7.1
Tambahkan dan .
Langkah 3.3.7.2
Kalikan dengan .
Langkah 3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 3.4.2
Gabungkan dan .
Langkah 4
Cari turunan keempat.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Tulis kembali sebagai .
Langkah 4.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.1.2.2.2
Kalikan dengan .
Langkah 4.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.3
Ganti semua kemunculan dengan .
Langkah 4.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Kalikan dengan .
Langkah 4.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.3.5
Kalikan dengan .
Langkah 4.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.7.1
Tambahkan dan .
Langkah 4.3.7.2
Kalikan dengan .
Langkah 4.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.2.1
Gabungkan dan .
Langkah 4.4.2.2
Pindahkan tanda negatif di depan pecahan.