Kalkulus Contoh

Cari Turunan 2nd f(x)=x/(4-7x)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2
Kalikan dengan .
Langkah 1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.5
Tambahkan dan .
Langkah 1.2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.7
Kalikan dengan .
Langkah 1.2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.9
Sederhanakan dengan menambahkan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.9.1
Kalikan dengan .
Langkah 1.2.9.2
Tambahkan dan .
Langkah 1.2.9.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.9.3.1
Tambahkan dan .
Langkah 1.2.9.3.2
Susun kembali suku-suku.
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Tulis kembali sebagai .
Langkah 2.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.1.2.2.2
Kalikan dengan .
Langkah 2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Kalikan dengan .
Langkah 2.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan dengan .
Langkah 2.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.7.1
Tambahkan dan .
Langkah 2.3.7.2
Kalikan dengan .
Langkah 2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.4.2
Gabungkan dan .
Langkah 3
Tentukan turunan ketiganya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1
Tulis kembali sebagai .
Langkah 3.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.1.2.2.2
Kalikan dengan .
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Kalikan dengan .
Langkah 3.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.5
Kalikan dengan .
Langkah 3.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.7.1
Tambahkan dan .
Langkah 3.3.7.2
Kalikan dengan .
Langkah 3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 3.4.2
Gabungkan dan .
Langkah 4
Cari turunan keempat.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Tulis kembali sebagai .
Langkah 4.1.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.1.2.2.2
Kalikan dengan .
Langkah 4.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.3
Ganti semua kemunculan dengan .
Langkah 4.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Kalikan dengan .
Langkah 4.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.3.5
Kalikan dengan .
Langkah 4.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.7.1
Tambahkan dan .
Langkah 4.3.7.2
Kalikan dengan .
Langkah 4.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.4.2
Gabungkan dan .
Langkah 5
Turunan keempat dari terhadap adalah .