Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Evaluasi limitnya.
Langkah 1.2.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.2.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Langkah 1.2.3.1
Kalikan dengan .
Langkah 1.2.3.2
Nilai eksak dari adalah .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Evaluasi limitnya.
Langkah 1.3.1.1
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 1.3.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Langkah 1.3.3.1
Kalikan dengan .
Langkah 1.3.3.2
Nilai eksak dari adalah .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Turunan dari terhadap adalah .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.5
Kalikan dengan .
Langkah 3.6
Pindahkan ke sebelah kiri .
Langkah 3.7
Kalikan dengan .
Langkah 3.8
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.8.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.8.2
Turunan dari terhadap adalah .
Langkah 3.8.3
Ganti semua kemunculan dengan .
Langkah 3.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.10
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.11
Kalikan dengan .
Langkah 3.12
Pindahkan ke sebelah kiri .
Langkah 3.13
Kalikan dengan .
Langkah 4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 6
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 7
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 8
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 9
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 10
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 11
Langkah 11.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 11.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 12
Langkah 12.1
Gabungkan.
Langkah 12.2
Faktorkan dari .
Langkah 12.3
Pisahkan pecahan.
Langkah 12.4
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 12.5
Kalikan balikan dari pecahan tersebut untuk membagi dengan .
Langkah 12.6
Kalikan dengan .
Langkah 12.7
Kalikan dengan .
Langkah 12.8
Kalikan dengan .
Langkah 12.9
Pisahkan pecahan.
Langkah 12.10
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 12.11
Kalikan balikan dari pecahan tersebut untuk membagi dengan .
Langkah 12.12
Kalikan dengan .
Langkah 12.13
Kalikan dengan dengan menambahkan eksponennya.
Langkah 12.13.1
Pindahkan .
Langkah 12.13.2
Kalikan dengan .
Langkah 12.14
Kalikan dengan dengan menambahkan eksponennya.
Langkah 12.14.1
Pindahkan .
Langkah 12.14.2
Kalikan dengan .
Langkah 12.14.2.1
Naikkan menjadi pangkat .
Langkah 12.14.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 12.14.3
Tambahkan dan .
Langkah 12.15
Nilai eksak dari adalah .
Langkah 12.16
Satu dipangkat berapa pun sama dengan satu.
Langkah 12.17
Kalikan dengan .