Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Evaluasi limitnya.
Langkah 1.2.1.1
Pindahkan limit ke dalam logaritma.
Langkah 1.2.1.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Langkah 1.2.3.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.2.3.2
Log alami dari adalah .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Evaluasi limitnya.
Langkah 1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.3.1.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.3.1.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Langkah 1.3.3.1
Sederhanakan setiap suku.
Langkah 1.3.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.3.3.1.2
Kalikan dengan .
Langkah 1.3.3.2
Kurangi dengan .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Turunan dari terhadap adalah .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Gabungkan dan .
Langkah 3.5
Gabungkan dan .
Langkah 3.6
Hapus faktor persekutuan dari dan .
Langkah 3.6.1
Faktorkan dari .
Langkah 3.6.2
Batalkan faktor persekutuan.
Langkah 3.6.2.1
Faktorkan dari .
Langkah 3.6.2.2
Batalkan faktor persekutuan.
Langkah 3.6.2.3
Tulis kembali pernyataannya.
Langkah 3.7
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.10
Tambahkan dan .
Langkah 4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5
Langkah 5.1
Kalikan dengan .
Langkah 5.2
Naikkan menjadi pangkat .
Langkah 5.3
Naikkan menjadi pangkat .
Langkah 5.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.5
Tambahkan dan .
Langkah 6
Langkah 6.1
Batalkan faktor persekutuan dari .
Langkah 6.1.1
Batalkan faktor persekutuan.
Langkah 6.1.2
Tulis kembali pernyataannya.
Langkah 6.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 6.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 6.4
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 7
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 8
Langkah 8.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 8.2
Bagilah dengan .