Kalkulus Contoh

Cari dy/dx 162=yx^2
Langkah 1
Diferensialkan kedua sisi persamaan tersebut.
Langkah 2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3
Diferensialkan sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.2
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.2
Pindahkan ke sebelah kiri .
Langkah 3.3
Tulis kembali sebagai .
Langkah 3.4
Susun kembali suku-suku.
Langkah 4
Membentuk ulang persamaan dengan mengatur sisi kiri sama dengan sisi kanan.
Langkah 5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Bagilah setiap suku di dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2
Bagilah dengan .
Langkah 5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1.1
Faktorkan dari .
Langkah 5.3.3.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1.2.1
Faktorkan dari .
Langkah 5.3.3.1.2.2
Batalkan faktor persekutuan.
Langkah 5.3.3.1.2.3
Tulis kembali pernyataannya.
Langkah 5.3.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 6
Ganti dengan .