Kalkulus Contoh

Tentukan Turunan - d/dx y=cos(6x)^x
Langkah 1
Gunakan sifat-sifat logaritma untuk menyederhanakan differensiasinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tulis kembali sebagai .
Langkah 1.2
Perluas dengan memindahkan ke luar logaritma.
Langkah 2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 2.3
Ganti semua kemunculan dengan .
Langkah 3
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.2
Turunan dari terhadap adalah .
Langkah 4.3
Ganti semua kemunculan dengan .
Langkah 5
Konversikan dari ke .
Langkah 6
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 6.2
Turunan dari terhadap adalah .
Langkah 6.3
Ganti semua kemunculan dengan .
Langkah 7
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 7.2
Kalikan dengan .
Langkah 7.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.4
Kalikan dengan .
Langkah 7.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.6
Kalikan dengan .
Langkah 8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Terapkan sifat distributif.
Langkah 8.2
Hilangkan tanda kurung.
Langkah 8.3
Susun kembali suku-suku.