Kalkulus Contoh

Tentukan Turunan - d/dx (6e^(2x)-x)^3
Langkah 1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Ganti semua kemunculan dengan .
Langkah 2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.3
Ganti semua kemunculan dengan .
Langkah 4
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2
Kalikan dengan .
Langkah 4.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.4
Kalikan dengan .
Langkah 4.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.7
Kalikan dengan .