Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati 0 dari (sin(3x))/(x^2)
Langkah 1
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.1.2.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.3.1
Kalikan dengan .
Langkah 1.1.2.3.2
Nilai eksak dari adalah .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2.2
Turunan dari terhadap adalah .
Langkah 1.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.3.6
Pindahkan ke sebelah kiri .
Langkah 1.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2
Karena fungsi mendekati dari kiri dan dari kanan, limitnya tidak ada.