Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Tulis kembali sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Turunan dari terhadap adalah .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.4.2
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Tulis kembali sebagai .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.6
Kalikan eksponen dalam .
Langkah 2.3.6.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.6.2
Kalikan dengan .
Langkah 2.3.7
Kalikan dengan .
Langkah 2.3.8
Naikkan menjadi pangkat .
Langkah 2.3.9
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.10
Kurangi dengan .
Langkah 2.3.11
Kalikan dengan .
Langkah 2.3.12
Kalikan dengan .
Langkah 2.3.13
Tambahkan dan .
Langkah 2.4
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.6
Gabungkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Tulis kembali sebagai .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3
Turunan dari terhadap adalah .
Langkah 4.1.4
Sederhanakan.
Langkah 4.1.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.1.4.2
Susun kembali suku-suku.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Langkah 5.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.2.2
Karena memiliki bilangan dan variabel, ada dua langkah untuk menemukan KPK. Temukan KPK untuk bagian numerik kemudian temukan KPK untuk bagian variabel .
Langkah 5.2.3
KPK-nya adalah bilangan positif terkecil yang semua bilangannya dibagi secara merata.
1. Sebutkan faktor prima dari masing-masing bilangan.
2. Kalikan masing-masing faktor dengan jumlah terbesar dari kedua bilangan tersebut.
Langkah 5.2.4
Bilangan bukan bilangan prima karena bilangan tersebut hanya memiliki satu faktor positif, yaitu bilangan itu sendiri.
Bukan bilangan prima
Langkah 5.2.5
KPK dari adalah hasil perkalian semua faktor prima yang paling banyak muncul pada kedua bilangan tersebut.
Langkah 5.2.6
Faktor untuk adalah itu sendiri.
terjadi kali.
Langkah 5.2.7
Faktor-faktor untuk adalah , yaitu dikalikan satu sama lain kali.
terjadi kali.
Langkah 5.2.8
KPK dari adalah hasil dari mengalikan semua faktor prima dengan frekuensi terbanyak yang muncul pada kedua pernyataan tersebut.
Langkah 5.2.9
Kalikan dengan .
Langkah 5.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 5.3.1
Kalikan setiap suku dalam dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Langkah 5.3.2.1
Sederhanakan setiap suku.
Langkah 5.3.2.1.1
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.1.1
Faktorkan dari .
Langkah 5.3.2.1.1.2
Batalkan faktor persekutuan.
Langkah 5.3.2.1.1.3
Tulis kembali pernyataannya.
Langkah 5.3.2.1.2
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 5.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 5.3.3
Sederhanakan sisi kanannya.
Langkah 5.3.3.1
Kalikan dengan .
Langkah 5.4
Tambahkan ke kedua sisi persamaan.
Langkah 6
Langkah 6.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.2
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.3
Selesaikan .
Langkah 6.3.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 6.3.2
Sederhanakan .
Langkah 6.3.2.1
Tulis kembali sebagai .
Langkah 6.3.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.3.2.3
Tambah atau kurang adalah .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan setiap suku.
Langkah 9.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.2
Batalkan faktor persekutuan dari .
Langkah 9.1.2.1
Batalkan faktor persekutuan.
Langkah 9.1.2.2
Tulis kembali pernyataannya.
Langkah 9.1.3
Kalikan dengan .
Langkah 9.1.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.5
Bagilah dengan .
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Sederhanakan setiap suku.
Langkah 11.2.1.1
Bagilah dengan .
Langkah 11.2.1.2
Log alami dari adalah .
Langkah 11.2.2
Tambahkan dan .
Langkah 11.2.3
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13