Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.3
Turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Gabungkan dan .
Langkah 1.3.6
Batalkan faktor persekutuan dari .
Langkah 1.3.6.1
Batalkan faktor persekutuan.
Langkah 1.3.6.2
Tulis kembali pernyataannya.
Langkah 1.3.7
Kalikan dengan .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Terapkan sifat distributif.
Langkah 1.4.2
Gabungkan suku-sukunya.
Langkah 1.4.2.1
Kalikan dengan .
Langkah 1.4.2.2
Kurangi dengan .
Langkah 2
Langkah 2.1
Diferensialkan.
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Turunan dari terhadap adalah .
Langkah 2.2.3
Gabungkan dan .
Langkah 2.2.4
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3
Kurangi dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Evaluasi .
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.3.3
Turunan dari terhadap adalah .
Langkah 4.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.5
Gabungkan dan .
Langkah 4.1.3.6
Batalkan faktor persekutuan dari .
Langkah 4.1.3.6.1
Batalkan faktor persekutuan.
Langkah 4.1.3.6.2
Tulis kembali pernyataannya.
Langkah 4.1.3.7
Kalikan dengan .
Langkah 4.1.4
Sederhanakan.
Langkah 4.1.4.1
Terapkan sifat distributif.
Langkah 4.1.4.2
Gabungkan suku-sukunya.
Langkah 4.1.4.2.1
Kalikan dengan .
Langkah 4.1.4.2.2
Kurangi dengan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.3.1
Bagilah setiap suku di dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Langkah 5.3.2.1
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2
Bagilah dengan .
Langkah 5.3.3
Sederhanakan sisi kanannya.
Langkah 5.3.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 5.4
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 5.5
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 5.6
Tulis kembali persamaan tersebut sebagai .
Langkah 6
Langkah 6.1
Atur argumen dalam agar lebih kecil dari atau sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.2
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 10
Langkah 10.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2
Sederhanakan hasilnya.
Langkah 10.2.1
Sederhanakan setiap suku.
Langkah 10.2.1.1
Gunakan aturan logaritma untuk memindahkan keluar dari eksponen.
Langkah 10.2.1.2
Log alami dari adalah .
Langkah 10.2.1.3
Kalikan dengan .
Langkah 10.2.1.4
Batalkan faktor persekutuan dari .
Langkah 10.2.1.4.1
Faktorkan dari .
Langkah 10.2.1.4.2
Batalkan faktor persekutuan.
Langkah 10.2.1.4.3
Tulis kembali pernyataannya.
Langkah 10.2.1.5
Kalikan dengan .
Langkah 10.2.2
Kurangi dengan .
Langkah 10.2.3
Jawaban akhirnya adalah .
Langkah 11
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
Langkah 12