Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Uraikan pecahan dan kalikan dengan penyebut persekutuan.
Langkah 1.1.1
Faktorkan dari .
Langkah 1.1.1.1
Naikkan menjadi pangkat .
Langkah 1.1.1.2
Faktorkan dari .
Langkah 1.1.1.3
Faktorkan dari .
Langkah 1.1.1.4
Faktorkan dari .
Langkah 1.1.1.5
Kalikan dengan .
Langkah 1.1.2
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 1.1.3
Kalikan setiap pecahan dalam persamaan dengan penyebut dari pernyataan awalnya. Dalam hal ini, penyebutnya adalah .
Langkah 1.1.4
Batalkan faktor persekutuan dari .
Langkah 1.1.4.1
Batalkan faktor persekutuan.
Langkah 1.1.4.2
Tulis kembali pernyataannya.
Langkah 1.1.5
Batalkan faktor persekutuan dari .
Langkah 1.1.5.1
Batalkan faktor persekutuan.
Langkah 1.1.5.2
Tulis kembali pernyataannya.
Langkah 1.1.6
Sederhanakan setiap suku.
Langkah 1.1.6.1
Batalkan faktor persekutuan dari .
Langkah 1.1.6.1.1
Batalkan faktor persekutuan.
Langkah 1.1.6.1.2
Bagilah dengan .
Langkah 1.1.6.2
Terapkan sifat distributif.
Langkah 1.1.6.3
Kalikan dengan .
Langkah 1.1.6.4
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.1.6.5
Batalkan faktor persekutuan dari .
Langkah 1.1.6.5.1
Batalkan faktor persekutuan.
Langkah 1.1.6.5.2
Bagilah dengan .
Langkah 1.1.7
Sederhanakan pernyataannya.
Langkah 1.1.7.1
Pindahkan .
Langkah 1.1.7.2
Susun kembali dan .
Langkah 1.1.7.3
Pindahkan .
Langkah 1.2
Buatlah persamaan untuk variabel pecahan parsial dan gunakan untuk membuat sistem persamaan.
Langkah 1.2.1
Buat persamaan dari variabel pecahan parsial dengan menyamakan koefisien dari masing-masing sisi persamaan. Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.2
Buat persamaan untuk variabel pecahan parsial dengan menyamakan koefisien suku yang tidak memuat . Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.3
Buat sistem persamaan untuk menentukan koefisien dari pecahan parsialnya.
Langkah 1.3
Selesaikan sistem persamaan tersebut.
Langkah 1.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.2
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Langkah 1.3.2.1
Substitusikan semua kemunculan dalam dengan .
Langkah 1.3.2.2
Sederhanakan sisi kanannya.
Langkah 1.3.2.2.1
Kalikan dengan .
Langkah 1.3.3
Selesaikan dalam .
Langkah 1.3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.3.4
Selesaikan sistem persamaan tersebut.
Langkah 1.3.5
Sebutkan semua penyelesaiannya.
Langkah 1.4
Ganti masing-masing koefisien pecahan parsial dalam dengan nilai-nilai yang didapat dari dan .
Langkah 1.5
Hilangkan nol dari pernyataan tersebut.
Langkah 2
Bagi integral tunggal menjadi beberapa integral.
Langkah 3
Integral dari terhadap adalah .
Langkah 4
Langkah 4.1
Biarkan . Tentukan .
Langkah 4.1.1
Tulis kembali.
Langkah 4.1.2
Bagilah dengan .
Langkah 4.2
Tulis kembali soalnya menggunakan dan .
Langkah 5
Pindahkan tanda negatif di depan pecahan.
Langkah 6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 7
Integral dari terhadap adalah .
Langkah 8
Sederhanakan.
Langkah 9
Gunakan sifat hasil bagi dari logaritma, .
Langkah 10
Ganti semua kemunculan dengan .