Kalkulus Contoh

Evaluasi Integralnya integral dari (x^2-9)/(x+3) terhadap x
Langkah 1
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
++-
Langkah 1.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
++-
Langkah 1.3
Kalikan suku hasil bagi baru dengan pembagi.
++-
++
Langkah 1.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
++-
--
Langkah 1.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
++-
--
-
Langkah 1.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
++-
--
--
Langkah 1.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
-
++-
--
--
Langkah 1.8
Kalikan suku hasil bagi baru dengan pembagi.
-
++-
--
--
--
Langkah 1.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
-
++-
--
--
++
Langkah 1.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
-
++-
--
--
++
Langkah 1.11
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 2
Bagi integral tunggal menjadi beberapa integral.
Langkah 3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 4
Terapkan aturan konstanta.
Langkah 5
Sederhanakan.