Masukkan soal...
Kalkulus Contoh
Langkah 1
Integralkan bagian demi bagian menggunakan rumus , di mana dan .
Langkah 2
Gabungkan dan .
Langkah 3
Langkah 3.1
Biarkan . Tentukan .
Langkah 3.1.1
Diferensialkan .
Langkah 3.1.2
Diferensialkan.
Langkah 3.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.3
Evaluasi .
Langkah 3.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.1.3.3
Kalikan dengan .
Langkah 3.1.4
Kurangi dengan .
Langkah 3.2
Substitusikan batas bawah untuk di .
Langkah 3.3
Sederhanakan.
Langkah 3.3.1
Sederhanakan setiap suku.
Langkah 3.3.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 3.3.1.2
Kalikan dengan .
Langkah 3.3.2
Tambahkan dan .
Langkah 3.4
Substitusikan batas atas untuk di .
Langkah 3.5
Sederhanakan.
Langkah 3.5.1
Sederhanakan setiap suku.
Langkah 3.5.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.5.1.2
Kalikan dengan .
Langkah 3.5.2
Kurangi dengan .
Langkah 3.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 3.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 4
Langkah 4.1
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2
Kalikan dengan .
Langkah 4.3
Pindahkan ke sebelah kiri .
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Kalikan dengan .
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Langkah 8.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 8.2
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 8.3
Kalikan eksponen dalam .
Langkah 8.3.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 8.3.2
Gabungkan dan .
Langkah 8.3.3
Pindahkan tanda negatif di depan pecahan.
Langkah 9
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 10
Langkah 10.1
Evaluasi pada dan pada .
Langkah 10.2
Evaluasi pada dan pada .
Langkah 10.3
Sederhanakan.
Langkah 10.3.1
Kalikan dengan .
Langkah 10.3.2
Kalikan dengan .
Langkah 10.3.3
Kalikan dengan .
Langkah 10.3.4
Tambahkan dan .
Langkah 10.3.5
Tulis kembali sebagai .
Langkah 10.3.6
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 10.3.7
Batalkan faktor persekutuan dari .
Langkah 10.3.7.1
Batalkan faktor persekutuan.
Langkah 10.3.7.2
Tulis kembali pernyataannya.
Langkah 10.3.8
Evaluasi eksponennya.
Langkah 10.3.9
Kalikan dengan .
Langkah 10.3.10
Satu dipangkat berapa pun sama dengan satu.
Langkah 10.3.11
Kalikan dengan .
Langkah 10.3.12
Kurangi dengan .
Langkah 10.3.13
Gabungkan dan .
Langkah 10.3.14
Hapus faktor persekutuan dari dan .
Langkah 10.3.14.1
Faktorkan dari .
Langkah 10.3.14.2
Batalkan faktor persekutuan.
Langkah 10.3.14.2.1
Faktorkan dari .
Langkah 10.3.14.2.2
Batalkan faktor persekutuan.
Langkah 10.3.14.2.3
Tulis kembali pernyataannya.
Langkah 10.3.14.2.4
Bagilah dengan .
Langkah 11
Nilai eksak dari adalah .
Langkah 12
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: