Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan keduanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.1.1.4
Gabungkan dan .
Langkah 1.1.1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.1.6
Sederhanakan pembilangnya.
Langkah 1.1.1.6.1
Kalikan dengan .
Langkah 1.1.1.6.2
Kurangi dengan .
Langkah 1.1.1.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.1.8
Sederhanakan.
Langkah 1.1.1.8.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.1.1.8.2
Kalikan dengan .
Langkah 1.1.2
Tentukan turunan keduanya.
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Terapkan aturan-aturan dasar eksponen.
Langkah 1.1.2.2.1
Tulis kembali sebagai .
Langkah 1.1.2.2.2
Kalikan eksponen dalam .
Langkah 1.1.2.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.1.2.2.2.2
Gabungkan dan .
Langkah 1.1.2.2.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.1.2.5
Gabungkan dan .
Langkah 1.1.2.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.2.7
Sederhanakan pembilangnya.
Langkah 1.1.2.7.1
Kalikan dengan .
Langkah 1.1.2.7.2
Kurangi dengan .
Langkah 1.1.2.8
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.2.9
Gabungkan dan .
Langkah 1.1.2.10
Kalikan dengan .
Langkah 1.1.2.11
Sederhanakan pernyataannya.
Langkah 1.1.2.11.1
Kalikan dengan .
Langkah 1.1.2.11.2
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.1.3
Turunan kedua dari terhadap adalah .
Langkah 1.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Atur turunan keduanya sama dengan .
Langkah 1.2.2
Atur agar pembilangnya sama dengan nol.
Langkah 1.2.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 2
Langkah 2.1
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 2.2
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 3
Buat interval di sekitar nilai saat turunan keduanya bernilai nol atau tak hingga.
Langkah 4
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Langkah 4.2.1
Sederhanakan penyebutnya.
Langkah 4.2.1.1
Tulis kembali sebagai .
Langkah 4.2.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.2.1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.2.1.4
Gabungkan dan .
Langkah 4.2.1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.2.1.6
Sederhanakan pembilangnya.
Langkah 4.2.1.6.1
Kalikan dengan .
Langkah 4.2.1.6.2
Tambahkan dan .
Langkah 4.2.2
Jawaban akhirnya adalah .
Langkah 4.3
Grafiknya cekung ke bawah pada interval karena negatif.
Cekung ke bawah pada karena negatif
Cekung ke bawah pada karena negatif
Langkah 5