Kalkulus Contoh

Tentukan Titik Kritisnya sin(x)-cos(x)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2
Turunan dari terhadap adalah .
Langkah 1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Turunan dari terhadap adalah .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.1.3.4
Kalikan dengan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Bagilah setiap suku dalam persamaan tersebut dengan .
Langkah 2.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Batalkan faktor persekutuan.
Langkah 2.3.2
Tulis kembali pernyataannya.
Langkah 2.4
Konversikan dari ke .
Langkah 2.5
Pisahkan pecahan.
Langkah 2.6
Konversikan dari ke .
Langkah 2.7
Bagilah dengan .
Langkah 2.8
Kalikan dengan .
Langkah 2.9
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.10
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 2.11
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.11.1
Nilai eksak dari adalah .
Langkah 2.12
Fungsi tangen negatif pada kuadran kedua dan keempat. Untuk mencari penyelesaian kedua, kurangi sudut acuan dari untuk mencari penyelesaian di kuadran ketiga.
Langkah 2.13
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 2.13.1
Tambahkan ke .
Langkah 2.13.2
Sudut yang dihasilkan dari positif dan koterminal dengan .
Langkah 2.14
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.14.1
Periode fungsi dapat dihitung menggunakan .
Langkah 2.14.2
Ganti dengan dalam rumus untuk periode.
Langkah 2.14.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 2.14.4
Bagilah dengan .
Langkah 2.15
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 2.15.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 2.15.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.15.3
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 2.15.3.1
Gabungkan dan .
Langkah 2.15.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.15.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.15.4.1
Pindahkan ke sebelah kiri .
Langkah 2.15.4.2
Kurangi dengan .
Langkah 2.15.5
Sebutkan sudut-sudut barunya.
Langkah 2.16
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Substitusikan untuk .
Langkah 4.1.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1.1
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama.
Langkah 4.1.2.1.2
Nilai eksak dari adalah .
Langkah 4.1.2.1.3
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena kosinus negatif di kuadran kedua.
Langkah 4.1.2.1.4
Nilai eksak dari adalah .
Langkah 4.1.2.1.5
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1.5.1
Kalikan dengan .
Langkah 4.1.2.1.5.2
Kalikan dengan .
Langkah 4.1.2.2
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.2.2.2
Tambahkan dan .
Langkah 4.1.2.2.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.3.1
Batalkan faktor persekutuan.
Langkah 4.1.2.2.3.2
Bagilah dengan .
Langkah 4.2
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Substitusikan untuk .
Langkah 4.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1.1
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena sinus negatif di kuadran keempat.
Langkah 4.2.2.1.2
Nilai eksak dari adalah .
Langkah 4.2.2.1.3
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama.
Langkah 4.2.2.1.4
Nilai eksak dari adalah .
Langkah 4.2.2.2
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.2.2.2.2
Kurangi dengan .
Langkah 4.2.2.2.3
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.2.3.1
Faktorkan dari .
Langkah 4.2.2.2.3.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.2.3.2.1
Faktorkan dari .
Langkah 4.2.2.2.3.2.2
Batalkan faktor persekutuan.
Langkah 4.2.2.2.3.2.3
Tulis kembali pernyataannya.
Langkah 4.2.2.2.3.2.4
Bagilah dengan .
Langkah 4.3
Tuliskan semua titik-titiknya.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5