Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 1.2
Batalkan faktor persekutuan dari .
Langkah 1.2.1
Batalkan faktor persekutuan.
Langkah 1.2.2
Tulis kembali pernyataannya.
Langkah 2
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari pembilangnya.
Langkah 2.1.2.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.3
Nilai eksak dari adalah .
Langkah 2.1.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Turunan dari terhadap adalah .
Langkah 2.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Evaluasi limitnya.
Langkah 2.4.1
Bagilah dengan .
Langkah 2.4.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.6
Nilai eksak dari adalah .