Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=x^4-4x^3+10
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Tambahkan dan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Faktorkan dari .
Langkah 2.2.2
Faktorkan dari .
Langkah 2.2.3
Faktorkan dari .
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.4.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.2.1
Tulis kembali sebagai .
Langkah 2.4.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.4.2.2.3
Tambah atau kurang adalah .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Naikkan menjadi pangkat .
Langkah 5.2.1.4
Kalikan dengan .
Langkah 5.2.2
Kurangi dengan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 6.2.1.2
Naikkan menjadi pangkat .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.4.1
Faktorkan dari .
Langkah 6.2.1.4.2
Batalkan faktor persekutuan.
Langkah 6.2.1.4.3
Tulis kembali pernyataannya.
Langkah 6.2.1.5
Terapkan kaidah hasil kali ke .
Langkah 6.2.1.6
Naikkan menjadi pangkat .
Langkah 6.2.1.7
Naikkan menjadi pangkat .
Langkah 6.2.1.8
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.8.1
Faktorkan dari .
Langkah 6.2.1.8.2
Batalkan faktor persekutuan.
Langkah 6.2.1.8.3
Tulis kembali pernyataannya.
Langkah 6.2.1.9
Kalikan dengan .
Langkah 6.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.2.3
Gabungkan dan .
Langkah 6.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.5.1
Kalikan dengan .
Langkah 6.2.5.2
Kurangi dengan .
Langkah 6.2.6
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.7
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1.1
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 7.2.1.1.2
Tambahkan dan .
Langkah 7.2.1.2
Naikkan menjadi pangkat .
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.1.4
Kalikan dengan .
Langkah 7.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 9