Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3
Ganti semua kemunculan dengan .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4
Sederhanakan pernyataannya.
Langkah 1.2.4.1
Tambahkan dan .
Langkah 1.2.4.2
Kalikan dengan .
Langkah 1.2.4.3
Susun kembali faktor-faktor dari .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Ganti semua kemunculan dengan .
Langkah 2.4
Diferensialkan.
Langkah 2.4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.4
Sederhanakan pernyataannya.
Langkah 2.4.4.1
Tambahkan dan .
Langkah 2.4.4.2
Kalikan dengan .
Langkah 2.5
Naikkan menjadi pangkat .
Langkah 2.6
Naikkan menjadi pangkat .
Langkah 2.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.8
Tambahkan dan .
Langkah 2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.10
Kalikan dengan .
Langkah 2.11
Sederhanakan.
Langkah 2.11.1
Terapkan sifat distributif.
Langkah 2.11.2
Kalikan dengan .
Langkah 2.11.3
Faktorkan dari .
Langkah 2.11.3.1
Faktorkan dari .
Langkah 2.11.3.2
Faktorkan dari .
Langkah 2.11.3.3
Faktorkan dari .
Langkah 2.11.4
Tambahkan dan .
Langkah 3
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3
Diferensialkan.
Langkah 3.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.4
Kalikan dengan .
Langkah 3.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.6
Sederhanakan pernyataannya.
Langkah 3.3.6.1
Tambahkan dan .
Langkah 3.3.6.2
Pindahkan ke sebelah kiri .
Langkah 3.4
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.4.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4.3
Ganti semua kemunculan dengan .
Langkah 3.5
Diferensialkan.
Langkah 3.5.1
Pindahkan ke sebelah kiri .
Langkah 3.5.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.5.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.5.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5.5
Sederhanakan pernyataannya.
Langkah 3.5.5.1
Tambahkan dan .
Langkah 3.5.5.2
Kalikan dengan .
Langkah 3.6
Sederhanakan.
Langkah 3.6.1
Terapkan sifat distributif.
Langkah 3.6.2
Terapkan sifat distributif.
Langkah 3.6.3
Kalikan dengan .
Langkah 3.6.4
Kalikan dengan .
Langkah 3.6.5
Kalikan dengan .
Langkah 3.6.6
Faktorkan dari .
Langkah 3.6.6.1
Faktorkan dari .
Langkah 3.6.6.2
Faktorkan dari .
Langkah 3.6.6.3
Faktorkan dari .
Langkah 3.6.7
Susun kembali faktor-faktor dari .
Langkah 4
Langkah 4.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Langkah 4.1.1
Sederhanakan setiap suku.
Langkah 4.1.1.1
Terapkan sifat distributif.
Langkah 4.1.1.2
Kalikan dengan .
Langkah 4.1.2
Sederhanakan dengan menambahkan suku-suku.
Langkah 4.1.2.1
Tambahkan dan .
Langkah 4.1.2.2
Tambahkan dan .
Langkah 4.1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.3
Diferensialkan.
Langkah 4.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.3.4
Kalikan dengan .
Langkah 4.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.6
Tambahkan dan .
Langkah 4.4
Naikkan menjadi pangkat .
Langkah 4.5
Naikkan menjadi pangkat .
Langkah 4.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.7
Sederhanakan pernyataannya.
Langkah 4.7.1
Tambahkan dan .
Langkah 4.7.2
Pindahkan ke sebelah kiri .
Langkah 4.8
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.9
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.9.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.9.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.9.3
Ganti semua kemunculan dengan .
Langkah 4.10
Diferensialkan.
Langkah 4.10.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.10.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.10.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.10.4
Sederhanakan pernyataannya.
Langkah 4.10.4.1
Tambahkan dan .
Langkah 4.10.4.2
Kalikan dengan .
Langkah 4.11
Naikkan menjadi pangkat .
Langkah 4.12
Naikkan menjadi pangkat .
Langkah 4.13
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.14
Tambahkan dan .
Langkah 4.15
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.16
Kalikan dengan .
Langkah 5
Turunan keempat dari terhadap adalah .