Masukkan soal...
Kalkulus Contoh
Langkah 1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Sederhanakan pernyataannya.
Langkah 2.4.1
Tambahkan dan .
Langkah 2.4.2
Pindahkan ke sebelah kiri .
Langkah 2.5
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.8
Sederhanakan pernyataannya.
Langkah 2.8.1
Tambahkan dan .
Langkah 2.8.2
Kalikan dengan .
Langkah 3
Langkah 3.1
Terapkan sifat distributif.
Langkah 3.2
Terapkan sifat distributif.
Langkah 3.3
Terapkan sifat distributif.
Langkah 3.4
Sederhanakan pembilangnya.
Langkah 3.4.1
Sederhanakan setiap suku.
Langkah 3.4.1.1
Kalikan dengan dengan menambahkan eksponennya.
Langkah 3.4.1.1.1
Pindahkan .
Langkah 3.4.1.1.2
Kalikan dengan .
Langkah 3.4.1.2
Kalikan dengan .
Langkah 3.4.1.3
Kalikan dengan .
Langkah 3.4.2
Kurangi dengan .
Langkah 3.5
Faktorkan menggunakan aturan kuadrat sempurna.
Langkah 3.5.1
Tulis kembali sebagai .
Langkah 3.5.2
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 3.5.3
Tulis kembali polinomialnya.
Langkah 3.5.4
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 3.6
Batalkan faktor persekutuan dari .
Langkah 3.6.1
Batalkan faktor persekutuan.
Langkah 3.6.2
Tulis kembali pernyataannya.