Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Diferensialkan.
Langkah 2.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2
Evaluasi .
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.1.3
Evaluasi .
Langkah 2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.3
Kalikan dengan .
Langkah 2.2
Tentukan turunan keduanya.
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2.2
Evaluasi .
Langkah 2.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2.3
Kalikan dengan .
Langkah 2.2.3
Evaluasi .
Langkah 2.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.3
Kalikan dengan .
Langkah 2.2.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4.2
Tambahkan dan .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.3.1
Bagilah setiap suku di dengan .
Langkah 3.3.2
Sederhanakan sisi kirinya.
Langkah 3.3.2.1
Batalkan faktor persekutuan dari .
Langkah 3.3.2.1.1
Batalkan faktor persekutuan.
Langkah 3.3.2.1.2
Bagilah dengan .
Langkah 3.3.3
Sederhanakan sisi kanannya.
Langkah 3.3.3.1
Bagilah dengan .
Langkah 4
Langkah 4.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.1.2
Sederhanakan hasilnya.
Langkah 4.1.2.1
Sederhanakan setiap suku.
Langkah 4.1.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.2.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.2.1.3
Kalikan dengan .
Langkah 4.1.2.1.4
Kalikan dengan .
Langkah 4.1.2.2
Sederhanakan dengan mengurangkan bilangan.
Langkah 4.1.2.2.1
Kurangi dengan .
Langkah 4.1.2.2.2
Kurangi dengan .
Langkah 4.1.2.3
Jawaban akhirnya adalah .
Langkah 4.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Kalikan dengan .
Langkah 6.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Kalikan dengan .
Langkah 7.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Titik belok adalah titik pada kurva ketika kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik belok dalam kasus ini adalah .
Langkah 9