Kalkulus Contoh

Tentukan Turunan - d/d@VAR f(x)=(x^3-3x^2+4)/(x^2)
Langkah 1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.1.2
Kalikan dengan .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.6
Kalikan dengan .
Langkah 2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.8
Tambahkan dan .
Langkah 2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.10
Sederhanakan dengan memfaktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.10.1
Kalikan dengan .
Langkah 2.10.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.10.2.1
Faktorkan dari .
Langkah 2.10.2.2
Faktorkan dari .
Langkah 2.10.2.3
Faktorkan dari .
Langkah 3
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Faktorkan dari .
Langkah 3.2
Batalkan faktor persekutuan.
Langkah 3.3
Tulis kembali pernyataannya.
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Terapkan sifat distributif.
Langkah 4.2
Terapkan sifat distributif.
Langkah 4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 4.3.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.2.1
Pindahkan .
Langkah 4.3.1.2.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.2.2.1
Naikkan menjadi pangkat .
Langkah 4.3.1.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.1.2.3
Tambahkan dan .
Langkah 4.3.1.3
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 4.3.1.4
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.4.1
Pindahkan .
Langkah 4.3.1.4.2
Kalikan dengan .
Langkah 4.3.1.5
Kalikan dengan .
Langkah 4.3.1.6
Kalikan dengan .
Langkah 4.3.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Tambahkan dan .
Langkah 4.3.2.2
Tambahkan dan .
Langkah 4.3.3
Kurangi dengan .
Langkah 4.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Tulis kembali sebagai .
Langkah 4.4.2
Karena kedua suku adalah pangkat tiga sempurna, faktorkan menggunakan rumus beda pangkat tiga. di mana dan .
Langkah 4.4.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.3.1
Pindahkan ke sebelah kiri .
Langkah 4.4.3.2
Naikkan menjadi pangkat .