Kalkulus Contoh

Tentukan Garis Singgung Horizontal y=x^2+2x
Langkah 1
Tetapkan sebagai fungsi dari .
Langkah 2
Tentukan turunannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 3
Atur turunan tersebut ahar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Bagilah setiap suku di dengan .
Langkah 3.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.2.2.1.2
Bagilah dengan .
Langkah 3.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.3.1
Bagilah dengan .
Langkah 4
Selesaikan fungsi asal pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Naikkan menjadi pangkat .
Langkah 4.2.1.2
Kalikan dengan .
Langkah 4.2.2
Kurangi dengan .
Langkah 4.2.3
Jawaban akhirnya adalah .
Langkah 5
Garis tangen datar pada fungsi adalah .
Langkah 6