Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Diferensialkan.
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Evaluasi .
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.2
Tentukan turunan keduanya.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.2
Evaluasi .
Langkah 1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2.3
Kalikan dengan .
Langkah 1.2.3
Evaluasi .
Langkah 1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3.3
Kalikan dengan .
Langkah 1.2.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4.2
Tambahkan dan .
Langkah 1.3
Turunan kedua dari terhadap adalah .
Langkah 2
Langkah 2.1
Atur turunan keduanya sama dengan .
Langkah 2.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.3.1
Bagilah setiap suku di dengan .
Langkah 2.3.2
Sederhanakan sisi kirinya.
Langkah 2.3.2.1
Batalkan faktor persekutuan dari .
Langkah 2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.1.2
Bagilah dengan .
Langkah 2.3.3
Sederhanakan sisi kanannya.
Langkah 2.3.3.1
Bagilah dengan .
Langkah 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.5
Sederhanakan .
Langkah 2.5.1
Tulis kembali sebagai .
Langkah 2.5.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.6
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.6.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.6.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.6.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Langkah 3.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.1.2
Sederhanakan hasilnya.
Langkah 3.1.2.1
Sederhanakan setiap suku.
Langkah 3.1.2.1.1
Naikkan menjadi pangkat .
Langkah 3.1.2.1.2
Naikkan menjadi pangkat .
Langkah 3.1.2.1.3
Kalikan dengan .
Langkah 3.1.2.1.4
Kalikan dengan .
Langkah 3.1.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.1.2.2.1
Kurangi dengan .
Langkah 3.1.2.2.2
Tambahkan dan .
Langkah 3.1.2.3
Jawaban akhirnya adalah .
Langkah 3.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.3
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.3.2
Sederhanakan hasilnya.
Langkah 3.3.2.1
Sederhanakan setiap suku.
Langkah 3.3.2.1.1
Naikkan menjadi pangkat .
Langkah 3.3.2.1.2
Naikkan menjadi pangkat .
Langkah 3.3.2.1.3
Kalikan dengan .
Langkah 3.3.2.1.4
Kalikan dengan .
Langkah 3.3.2.2
Sederhanakan dengan mengurangkan bilangan.
Langkah 3.3.2.2.1
Kurangi dengan .
Langkah 3.3.2.2.2
Kurangi dengan .
Langkah 3.3.2.3
Jawaban akhirnya adalah .
Langkah 3.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.5
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 4
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan setiap suku.
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.2
Kurangi dengan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan setiap suku.
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Langkah 9