Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.4
Gabungkan dan .
Langkah 1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.6
Sederhanakan pembilangnya.
Langkah 1.6.1
Kalikan dengan .
Langkah 1.6.2
Kurangi dengan .
Langkah 1.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.8
Sederhanakan.
Langkah 1.8.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.8.2
Kalikan dengan .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Terapkan aturan-aturan dasar eksponen.
Langkah 2.2.1
Tulis kembali sebagai .
Langkah 2.2.2
Kalikan eksponen dalam .
Langkah 2.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.2.2
Gabungkan dan .
Langkah 2.2.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.5
Gabungkan dan .
Langkah 2.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.7
Sederhanakan pembilangnya.
Langkah 2.7.1
Kalikan dengan .
Langkah 2.7.2
Kurangi dengan .
Langkah 2.8
Pindahkan tanda negatif di depan pecahan.
Langkah 2.9
Gabungkan dan .
Langkah 2.10
Kalikan dengan .
Langkah 2.11
Sederhanakan pernyataannya.
Langkah 2.11.1
Kalikan dengan .
Langkah 2.11.2
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 3
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Terapkan aturan-aturan dasar eksponen.
Langkah 3.2.1
Tulis kembali sebagai .
Langkah 3.2.2
Kalikan eksponen dalam .
Langkah 3.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.2.2.2
Kalikan .
Langkah 3.2.2.2.1
Gabungkan dan .
Langkah 3.2.2.2.2
Kalikan dengan .
Langkah 3.2.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.5
Gabungkan dan .
Langkah 3.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.7
Sederhanakan pembilangnya.
Langkah 3.7.1
Kalikan dengan .
Langkah 3.7.2
Kurangi dengan .
Langkah 3.8
Pindahkan tanda negatif di depan pecahan.
Langkah 3.9
Gabungkan dan .
Langkah 3.10
Kalikan.
Langkah 3.10.1
Kalikan dengan .
Langkah 3.10.2
Kalikan dengan .
Langkah 3.11
Kalikan dengan .
Langkah 3.12
Sederhanakan pernyataannya.
Langkah 3.12.1
Kalikan dengan .
Langkah 3.12.2
Pindahkan ke sebelah kiri .
Langkah 3.12.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 4
Langkah 4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2
Terapkan aturan-aturan dasar eksponen.
Langkah 4.2.1
Tulis kembali sebagai .
Langkah 4.2.2
Kalikan eksponen dalam .
Langkah 4.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.2.2.2
Kalikan .
Langkah 4.2.2.2.1
Gabungkan dan .
Langkah 4.2.2.2.2
Kalikan dengan .
Langkah 4.2.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 4.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.5
Gabungkan dan .
Langkah 4.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.7
Sederhanakan pembilangnya.
Langkah 4.7.1
Kalikan dengan .
Langkah 4.7.2
Kurangi dengan .
Langkah 4.8
Pindahkan tanda negatif di depan pecahan.
Langkah 4.9
Gabungkan dan .
Langkah 4.10
Kalikan dengan .
Langkah 4.11
Kalikan.
Langkah 4.11.1
Kalikan dengan .
Langkah 4.11.2
Kalikan dengan .
Langkah 4.11.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 5
Turunan keempat dari terhadap adalah .